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A B S T R A C T   

Alzheimer’s disease (AD) is a progressive form of dementia marked by cognitive and memory deficits, estimated 
to affect ~5.7 million Americans and account for ~$277 billion in medical costs in 2018. Depression is one of the 
most common neuropsychiatric disorders that accompanies AD, appearing in up to 50% of patients. AD and 
Depression commonly occur together with overlapped symptoms (depressed mood, anxiety, apathy, and 
cognitive deficits.) and pose diagnostic challenges early in the clinical presentation. Understanding their rela-
tionship is critical for advancing treatment strategies, but the interaction remains poorly studied and thus often 
leads to a rapid decline in functioning. Modern systems and control theory offer a wealth of novel methods and 
concepts to assess the important property of a complex control system, such as the brain. In particular, the brain 
controllability analysis captures the ability to guide the brain behavior from an initial state (healthy or diseased) 
to a desired state in finite time, with suitable choice of inputs such as external or internal stimuli. The 
controllability property of the brain’s dynamic processes will advance our understanding of the emergence and 
progression of brain diseases and thus helpful in the early diagnosis and novel treatment approaches. This study 
aims to assess the brain controllability differences between mild cognitive impairment (MCI), as prodromal AD, 
and Depression. This study used diffusion tensor imaging (DTI) data from 60 subjects from the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI): 15 cognitively normal subjects and 45 patients with MCI, including 15 
early MCI (EMCI) patients without depression, 15 EMCI patients with mild depression (EMCID), and 15 late MCI 
(LMCI) patients without depression. The structural brain network was firstly constructed and the brain 
controllability was characterized for each participant. The controllability of default mode network (DMN) and its 
sub-regions were then compared across groups in a structural basis. Results indicated that the brain average 
controllability of DMN in EMCI, LMCI, and EMCID were significantly decreased compared to healthy subjects (P 
< 0.05). The EMCI and LMCI groups also showed significantly greater average controllability of DMN versus the 
EMCID group. Furthermore, compared to healthy subjects, the regional controllability of the left/right superior 
prefrontal cortex and the left/right cingulate gyrus in the EMCID group showed a significant decrease (P < 0.01). 
Among these regions, the left superior prefrontal region’s controllability was significantly decreased (P < 0.05) 
in the EMCID group compared with EMCI and LMCI groups. Our results provide a new perspective in under-
standing depressive symptoms in MCI patients and provide potential biomarkers for diagnosing depression from 
MCI and AD.   

1. Introduction 

Alzheimer’s disease (AD) is the most common cause of dementia, 
characterized by cognitive and memory deficits and accounted for ~ 

$277 billion in medical costs in 2018 (A. s. Association, 2018). Its onset 
is marked by neurocognitive control disturbances, including memory 
loss, disinterest, trouble concentrating, and low motivation (Minati 
et al., 2009; Li et al., 2018; Luo et al., 2020). AD patients often develop 

* Corresponding authors: Department of Biomedical Engineering, University of Houston, 4849 Calhoun Rd. Rm 373, Houston, TX 77004 USA. 
** Co-corresponding authors. 

E-mail address: yzhang94@uh.edu (Y. Zhang).  

Contents lists available at ScienceDirect 

Journal of Affective Disorders 

journal homepage: www.elsevier.com/locate/jad 

https://doi.org/10.1016/j.jad.2021.07.106 
Received 19 May 2021; Received in revised form 22 July 2021; Accepted 26 July 2021   

mailto:yzhang94@uh.edu
www.sciencedirect.com/science/journal/01650327
https://www.elsevier.com/locate/jad
https://doi.org/10.1016/j.jad.2021.07.106
https://doi.org/10.1016/j.jad.2021.07.106
https://doi.org/10.1016/j.jad.2021.07.106
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jad.2021.07.106&domain=pdf


Journal of Affective Disorders 294 (2021) 847–856

848

significant neuropsychiatric symptoms that exacerbate deficits (Luo 
et al., 2021). Depression is currently acknowledged as the primary 
neuropsychiatric symptom of AD, appearing in up to 50% of AD patients 
(Chi et al., 2014). Unfortunately, depression also appears as a common, 
independent mood disorder in the elderly population, with symptoms 
that often overlap with AD (such as depressed mood, anxiety, apathy, 
cognitive deficits.) (A. P. Association, 2013). This overlap makes it 
difficult to determine whether symptomatic individuals have developed 
depression, are in the early stages of cognitive decline, or are suffering 
from the combined effects of both (Dillon et al., 2014). Moreover, the 
allostatic load that depression presents may worsen cognitive decline 
and increase the risk for AD development (Ownby et al., 2006). At 
present, a “wait and see” approach is often taken; however, the under-
lying neural alterations of AD begin before the cognitive decline and a 
passive monitoring approach would significantly delay treatment 
(Beason-Held et al., 2013). It is therefore of great clinical importance to 
identify the unique properties of individuals with mild cognitive 
impairment (MCI), as prodromal AD, with and without comorbid 
depression, to improve diagnostic methods and guide effective 
treatment. 

Several neuroimaging modalities, including Fluorodeoxyglucose 
Positron Emission Tomography (FDG-PET), functional magnetic reso-
nance imaging (fMRI), and diffusion tensor imaging (DTI), have been 
employed to study MCI and depression and have found functional al-
terations in several brain regions (Yu et al., 2019; Lee et al., 2010; Liu 
et al., 2017; Byers and Yaffe, 2011). MCI patients with depression show 
lower glucose metabolism in the superior frontal gyrus than MCI pa-
tients without depression (Lee et al., 2010). Resting-state fMRI mea-
surements were used to explore the temporal variability of intrinsic 
brain activity to identify the brain functional activity differences in two 
groups of MCI patients (with and without depression) (Yu et al., 2019). 
The results indicated that MCI patients with depression had a decreased 
capability of integrating distributed neural populations and brain areas, 
thereby changing the synchronization patterns of the brain after 
receiving an internal or external stimulus (Yu et al., 2019). A recent DTI 
study revealed that the structural impairments in the cortico-subcortical 
networks are related to affect regulation and reward /aversion control of 
dementia patients with depression (Byers and Yaffe, 2011). Moreover, 
the graph-based measures, such as node strength, betweenness cen-
trality, and global efficiency, were also used to explore the MCI patients 
with depression from a network perspective (Liu et al., 2017). Graph 
measures have been employed in various studies to explore the brain 
dynamic network behaviors (Fang et al., 2020,; Nguyen et al., 2019,; 
Sporns, 2018). For instance, the MCI patients with depression were re-
ported to have reduced whole-brain global efficiency and reduced local 
efficiency (Tumati et al., 2020). 

The default mode network (DMN) is a pluripotent ‘ground state’, and 
therefore theoretically can control the proceeding of the brain behavior 
into many task-based activation profiles (Lin et al., 2017). The brain’s 
default mode is also the state to which the brain relaxes after the task has 
been performed, readying the brain to move to new task states where the 
cycle can repeat (Gu et al., 2015). Its hubs include parts of the medial 
temporal lobe, prefrontal cortex, cingulate cortex, precuneus cortex, and 
parietal cortex (Öngür et al., 2010). Even though the DMN was usually 
interpreted in a functional basis, previous study also demonstrated that 
resting-state functional connectivity could reflect structural connectivity 
in the DMN (Greicius et al., 2009,; Guo et al., 2016). Two previous 
studies have used whole-brain DTI to discriminate participants with 
major depressive disorder (MDD) from participants without MDD based 
on DMN-related networks (Fang et al., 2012,; Korgaonkar et al., 2012). 
Recent studies have reported that the DMN is abnormal in dementia, the 
memory impairments observed in MCI, and depression (Burke et al., 
2019). The topologically convergent and divergent structural connec-
tivity patterns between depressive patients and MCI patients were also 
reported. For example, similar deficits of the regional and connectivity 
characteristics in the structural networks were primarily found in the 

frontal brain regions of depression and MCI patients compared with 
controls (Bai et al., 2012). Depression-related atrophy in DMN-related 
hubs such as the medial temporal gyrus (MTG), the superior prefrontal 
cortex (SPF), and the posterior cingulate cortex (CG), may also explain 
the disabling, and therefore intrinsically “dementing” nature of 
depressive illness (Wise et al., 2017,; Royall et al., 2013). However, the 
underlying control mechanisms of DMN and its related brain regions in 
dementia, especially associated with depression, have yet to be fully 
explored. 

Network control theory has recently been applied to interpret brain 
state transitions, suggesting that brain controllability can be used to 
evaluate the ease of brain network transition from one state to another 
(Gu et al., 2015). Conventional graph-based measurements show the 
local properties of varied brain regions and their important roles in their 
network architecture (Sporns, 2018). Differently, control theory-based 
network measurements describe one brain region’s ability to change 
the brain behavior from one state to another state, for example, from the 
brain executive state to the resting state, or maintain in a specific state, 
which is a systematic-level property (Tang et al., 2017,; Menara et al., 
2018). Therefore, exploring the control properties of different brain 
regions and their correlation with the traditional graph measures may 
help us understand these regional hubs’ functional roles and their crit-
ical roles in guiding the brain to move from any initial state to a desired 
state. 

Patients with depression may experience a reduced capability to 
initiate, maintain, and control their thoughts, behaviors, or emotions, to 
change their brain states and produce the desired result or avoid an 
undesired outcome (Strauman and Eddington, 2017,; Taquet et al., 
2020). Consequently, patients with depression are less susceptible to 
external mood-related salient stimuli, resulting in difficulty transiting to 
a state that motivates them to access the emotion or behavior. As brain 
states transition a critical part of cognitive control, network controlla-
bility can be used to explore the underlying control mechanism and 
neural circuits alterations of MCI patients with depression (Li et al., 
2018). Overall, these novel network metrics of controllability allow us to 
assess the relative importance of different brain regions in modulating 
brain behaviors from the systematic level, thus offering a new 
perspective to better understand the pathologic differences in depres-
sion and MCI. 

The goal of this study was to investigate the differences in the brain 
controllability between the early MCI patients without concurrent 
depression (EMCI) and with concurrent depression (EMCID), with 
particular attention being paid to the controllability of the DMN, which 
plays an important role in brain states transition. We hypothesize that 
the EMCID patients will have lower brain controllability in DMN and 
some cognitive-related regions than the other groups due to the super-
position effect. To the best of our knowledge, this study represents the 
first effort to investigate depression symptom in MCI patients at a sys-
tematic level, which may lead to “systematic biomarkers” that can be 
employed for early diagnosis and intervention. 

2. Materials and methods 

2.1. Participants 

All participants in this study were selected from the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) dataset, available at http://adni 
.loni.usc.edu/. ADNI is a large, multi-site longitudinal study for evalu-
ating biomarkers in Alzheimer’s Disease (AD) and MCI patients. Written 
informed consent was obtained, as approved by the Institutional Review 
Board at each participating center. 

The demographic data of the datasets are listed in Table 1. The 
schematic of brain controllability analysis steps is shown in Fig. 1. This 
study included 15 early MCI (EMCI) patients without depression, 15 late 
MCI (LMCI) patients without depression, 15 early MCI patients with 
depression (EMCID), and 15 cognitive normal subjects (CN). The 
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criterion for the selection of MCI patients with and without depression 
was based on the Geriatric Depression Scale (GDSCALE) Total Score 
(Scale, 1997). Thus, from the ADNI dataset, the EMCI and LMCI patients 
were selected from the early MCI and late MCI groups, respectively, with 
GDSCALE Total Score between 0 and 4, and the EMCID patients were 
chosen from the early MCI group with GDSCALE Total Score between 5 
and 8, which represent the EMCI patients with mild depression. All 
subjects underwent structural scanning on a 3 Tesla GE Medical systems 
machine according to the ADNI acquisition protocol. The LMCI group 
was included to evaluate the deficit level caused by depression in the 

EMCID group to ascertain whether depressive symptoms can cause 
worse brain dysfunction than the progressive effects of dementia. The 
EMCI and LMCI participants were classified by ADNI based on the 
WMS-R Logical Memory II Story A score (McGuire and Batchelor, 1998). 
The specific cutoff scores were as follows (out of a maximum score of 
25): Early MCI (ADNI-EMCI) was assigned for a score of 9-11 for 16 or 
more years of education; a score of 5-9 for 8-15 years of education; or a 
score of 3-6 for 0-7 years of education. Late MCI (ADNI-LMCI) was 
assigned for a score of ≤ 8 for 16 or more years of eduction; a score of ≤
4 for 8-15 years of education; or a score of ≤ 2 for 0-7 years of eduction 
(Edmonds et al., 2019). 

2.2. Preprocessing 

DTI data were preprocessed and reconstructed in DSI Studio (htt 
p://dsi-studio.labsolver.org/). Following prior methods (Gu et al., 
2015), motion artifact and image distortions caused by eddy currents 
were firstly corrected. DTI data were then reconstructed using the 
q-space diffeomorphic reconstruction (QSDR) method (Yeh and Tseng, 
2011). QSDR first reconstructed diffusion-weighted images in native 
space and computed the quantitative anisotropy (QA) in each voxel. 
These QA values were used to warp the brain to a template QA volume in 
Montreal Neurological Institute (MNI) space using the statistical para-
metric mapping (SPM) nonlinear registration algorithm. Once in MNI 
space, spin density functions were again reconstructed with a mean 
diffusion distance of 1.25 mm using three fiber orientations per voxel. 
Fiber tracking was performed in DSI studio with an angular cutoff of 900, 
step size of 1.0 mm, minimum length of 10 mm, spin density function 
smoothing of 0.0, and maximum length of 800 mm. Deterministic fiber 
tracking using a modified FACT algorithm was performed until 100,000 
streamlines were reconstructed for each individual. 

Table 1 
Demographic data of CN, EMCI, EMCID, and LMCI subjects.  

Variable CN n =
15 

EMCI n 
= 15 

EMCID n 
= 15 

LMCI n 
= 15 

Group 
differences 

Age 74.2 ±
8.2 

78.5 ±
4.3 

73.3 ± 7.6 72.6 ±
6.9  

Gender (M/ 
F) 

5/10 11/4 9/6 7/8  

MMSE 29.4 ±
0.9 

27.7 ±
1.4 

27.4 ± 2.3 26.8 ±
2.7 

* † §

GDSCALE 1.8 ±
1.1 

1.6 ± 0.9 5.5 ± 0.7 1.2 ± 1.5 † € ¶ 

Values represent mean ± SD. MMSE, Mini-Mental State Examination; GDSCALE, 
Geriatric Depression Scale. 
* Group differences (P < .05, adjusted for multiple comparison): CN vs. EMCI 
† Group differences (P < .05, adjusted for multiple comparison): CN vs. EMCID 
§ Group differences (P < .05, adjusted for multiple comparison): CN vs. LMCI 
€ Group differences (P < .05, adjusted for multiple comparison): EMCI vs. 
EMCID 
¥ Group differences (P < .05, adjusted for multiple comparison): EMCI vs. LMCI 
¶ Group differences (P < .05, adjusted for multiple comparison): EMCID vs. LMCI 

Fig. 1. Schematic of brain controllability analysis steps. (A) Diffusion tensor imaging measures the direction of water diffusion in the brain. From this data, white 
matter streamlines can be reconstructed that connect brain regions in a structural network. (B) Structural connectivity matrix indicating connections between 
different brain regions. Each element indicates the number of streamlines connecting two different brain regions. (C) From structural connectivity matrix, average 
controllability of each brain region can be calculated for each participant. (D) Visualize the brain controllability distribution map and quantify the controlla-
bility statistics. 

F. Fang et al.                                                                                                                                                                                                                                     

http://dsi-studio.labsolver.org/
http://dsi-studio.labsolver.org/


Journal of Affective Disorders 294 (2021) 847–856

850

Anatomical scans were segmented using FreeSurfer (https://surfer. 
nmr.mgh.harvard.edu/) and parcellated according to the Brainnetome 
atlas (https://atlas.brainnetome.org/). A parcellation scheme, including 
210 cortical brain regions, was registered to the b0 volume from each 
subject’s DTI data. Tractography was performed in DSI studio, and the 
number of streamlines connecting each pair of regions were used to 
weigh the edge connecting those regions and as the entries of the con-
nectivity matrix. 

2.3. Theory and calculation 

In control theory, a dynamical system’s controllability refers to the 
possibility of driving the state of a dynamical system to a specific target 
state using a control input (Gu et al., 2015). In contrast to traditional 
graph theory that provides descriptive statistics of network structure, 
network control theory offers mechanistic predictors of network dy-
namics. As for the brain, brain control can be thought of as the change in 
regional brain activity produced in response to real-time neurofeedback 
or the change in regional neural activity elicited by external stimuli or 
non-invasive brain stimulation (Gu et al., 2015). Each of these mecha-
nisms initially alters the dynamics of single brain regions, but can have 
consequences for distributed networks’ activity and function. Thus, the 
controllability measurement predicts each brain area’s ability to tran-
sition the brain system from any initial state (healthy or disease), to any 
desired state in finite time. Following this, the task- and cognitive- 
control areas are thought to drive or constrain neurophysiological dy-
namics over distributed neural circuits using transient modulations, 
consistent with the role of engineering controllers (Tang et al., 2017). 

One of the critical steps in applying network control theory to the 
human brain is to define a structural brain network and a model for the 
dynamics of neural processes. The streamline-weighted structural brain 
network was estimated from diffusion tractography based on DTI data. 
The weighted structural connectivity matrix A was defined as A = [Aij], 
where Aij represents the number of streamlines connecting region i and 
region j. The elements in the diagonal of connectivity matrix A were set 
to zero, so no self-connection was considered. The method assumed that 
the number of streamlines between two brain regions is proportional to 
structural connectivity’s strength regarding a proportion of activity 
between nodes (Gu et al., 2015). A simplified, noise-free linear 
time-invariant model of such dynamics can be formulated as follows: 

x(t + 1) = Ax(t) + BKuK(t) (1)  

where x with dimension N (number of regions) x 1 describes the state 
(that is, the magnitude of neurophysiological activity) of brain regions 
over time, and A with dimension N x N is the symmetric and weighted 
structural connectivity matrix as described above. The input matrix BK 
with dimension N x m identifies the control points K in the brain, where 
K = (k1, …, km) and BK = (ek1 , …, ekm ). ei denotes the i-th canonical 
vector of dimension N, and m denotes the number of targeted nodes. The 
input uk with dimension m x 1 denotes the external stimulation. 

2.4. Controllability matrix and graph measures 

Following the structural brain network and neural dynamic model’s 
construction, the diagnostic of average controllability utilized in the 
previous network control studies was examined (Gu et al., 2015). The 
average controllability of a network equals the average input energy 
from a set of control nodes and overall possible target states (Sakha and 
Shaker, 2017). As a known result, average input energy is proportional 
to the trace of W− 1

k , the trace of the inverse of the controllability Gra-
mian (Sreeram and Agathoklis, 1994). The controllability Gramian is 
defined as: 

WK =
∑∞

τ=0
AτBkBT

k Aτ (2) 

To be consistent with prior studies, here we adopted the trace of WK 

as a measure of average controllability. Therefore, the average 
controllability (ac) can be mathematically described as: 

ac = Trace(WK) (3) 

The control nodes were chosen one at a time, and thus the input 
matrix B was reduced to a one-dimensional vector. Region with the 
highest average controllability is, on average, most influential in the 
control of network dynamics over all different target states (Gu et al., 
2015). 

To investigate the relationship between traditional static network 
metrics and controllability, we employed three graph measures that 
have already been explored to observe the intrinsic dysconnectivity 
pattern of AD and depression: node strength, betweenness, and global 
efficiency (Guo et al., 2016,; Berlot et al., 2016). In brief, the node 
strength is the sum of weights of links connected to the node. The node 
strength can help us understand whether the control hubs are located in 
strongly connected brain areas or sparsely connected areas. The 
betweenness centrality represents the fraction of all shortest paths in the 
network that pass through a given node, which identifies important 
nodes on a high proportion of paths between other nodes in the network. 
Betweenness may reveal the central roles of the control hubs in our brain 
network. The global efficiency indicates the integration of the network, 
representing the degree to which a network can share information be-
tween regions. This property is essential for us to understand whether a 
structural efficiency network is more controllable by an internal and 
external stimulus or not. All graph measure calculations were performed 
using the Brain Connectivity Toolbox (Rubinov and Sporns, 2010). 

2.5. Statistical analysis 

The average controllability distribution of different groups were 
statistically compared using one-way ANOVA and multiple comparisons 
were performed based on Wilcoxon signed-rank test (Woolson, 2007). A 
linear regression model was then used to explore each graph measure’s 
relationship with the average controllability in each group, respectively 
(Poole and O’Farrell, 1971). The difference in overall average control-
lability in default mode network (DMN) between the E/LMCI, EMCID, 
and CN groups was statistically evaluated using one-way ANOVA. Wil-
coxon signed-rank test was further employed to perform the post-hoc 
analysis. The statistical tests were corrected for multiple comparisons 
using the false discovery rate (FDR) correction (Benjamini and Hoch-
berg, 1995). Regional controllability of a subset of regions in DMN 
(left/right medial temporal cortex, superior prefrontal cortex, and 
cingulate gyrus) were then compared between groups using Wilcoxon 
signed-rank test. 

3. Results 

3.1. Demographic and clinical behavioral data 

Table 1 summarizes the demographic information and clinical 
behavioral scores of all cognitive normal subjects and patients, including 
age, gender, and clinical assessment scores. One-way ANOVA results 
revealed that there was no significant group difference in terms of age (P 
> 0.05), but significant group differences existed in terms of MMSE (P <
0.05) and GDSCALE (P < 0.05) scores. Chi-square test showed there was 
no significant group differences in terms of gender (P > 0.05). Multiple 
comparisons using one tail t-tests revealed significantly greater MMSE 
scores of the CN subjects versus the other groups (P < 0.05) and 
significantly greater GDSCALE scores in the EMCID group versus the 
others (P < 0.05). However, no significant differences in MMSE scores 
was observed between MCI groups (P > 0.05) and no significant dif-
ferences was observed in GDSCALE scores between CN, EMCI, and LMCI 
groups (P > 0.05). 
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3.2. Controllability differences across the patient groups 

The average controllability was computed for each subject and 
averaged over all subjects in each group, respectively. As shown in 
Fig. 2, the regions with high average controllability were mainly located 
in the left superior prefrontal cortex, left precentral cortex, left superior, 
middle temporal cortex, and right cingulate cortex. One-way ANOVA 
results revealed that there were significant group differences in the 
average controllability distributions between different MCI groups (P <
0.05). The Wilcoxon rank-sum test was employed to compare the 
controllability distribution of different MCI groups, as shown in Fig. 3. 
According to the p-value scale indicated in the color bar, the yellow 
color on the top of the brain represents a significant difference between 
the two MCI groups. The left occipital cortex showed a significant dif-
ference between the EMCI and LMCI groups (P < 0.05). One-tail Wil-
coxon signed-rank test indicated that the average controllability of the 
left occipital cortex in the LMCI group was significantly greater than in 
the EMCI group (P < 0.05). Comparing the EMCI and EMCID groups, 
there were significant differences between the left/right superior pre-
frontal cortex, right inferior temporal cortex, and right postcentral 
cortex (P < 0.05). One-tail Wilcoxon signed-rank test indicated that the 
average controllability of these brain regions were significantly greater 
in the EMCI group versus the EMCID group (P < 0.05). The LMCI group 
showed a significant difference in regions of the left superior prefrontal 
cortex, left occipital cortex, and right postcentral cortex when compared 
with the EMCID group (P < 0.05), and one-tail Wilcoxon signed-rank 
test indicated that the average controllability of these brain regions 
were significantly greater in LMCI group than EMCID group (P < 0.05). 

3.3. Correlation between the controllability and traditional graph-theory 
measures 

The average controllability measurement was further compared with 
the traditional graph-theoretical measurements, as shown in Fig. 4. The 
correlation between controllability and node strength measure was high 
across the four groups (0.7687 ± 0.0650), with the highest r value of 
0.85493 in the EMCID group. The node betweenness measurement 

showed a weak correlation with the controllability measure (0.3599 ±
0.0859). The global efficiency showed a strong correlation with 
controllability measurement (0.9029 ± 0.0557), with the lowest r-value 
of 0.8219 in the cognitively normal group. 

Because of the high correlation between node strength and the 
controllability measurement, the distribution of node strength on the 
top of the brain was further visualized to check the similarity of the 
regional distribution between the two measurements (Fig. 5). The node 
strength distribution on the top of the brain showed a similar pattern as 
controllability measurement. The brain regions with high node strength 
are mainly located in the left superior prefrontal cortex, left precentral 
cortex, left/right inferior parietal area, right cingulate cortex, right 
medial temporal cortex, and right occipital area. 

3.4. The controllability of default mode network (DMN) in different 
groups 

The average controllability of the DMN was calculated from each 
subject and averaged over all subjects in each group. As shown in Fig. 6, 
the controllability of DMN in the cognitively normal group was signifi-
cantly higher than all MCI groups. Moreover, the controllability of DMN 
in the EMCI and LMCI groups were both significantly higher than the 
EMCID group. No significant difference was observed between the EMCI 
and LMCI groups. The sub-regions of DMN were further compared, 
including left/right middle temporal cortex, left/right superior pre-
frontal cortex, and left/right cingulate cortex. The controllability of left/ 
right superior prefrontal cortices and left/right cingulate cortices were 
significantly higher in the cognitively normal group than EMCID group. 
Among these regions, the controllability of the left superior prefrontal 
cortex in the EMCI and LMCI groups were both significantly higher than 
the EMCID group. The cognitive normal group also displayed signifi-
cantly higher controllability in the right superior prefrontal cortex than 
LMCI group and significantly higher controllability in the right cingulate 
cortex than the EMCI group. 

Fig. 2. Controllability distribution maps of different groups. The average controllability values, averaged across 15 participants in each group, and ranked for all 210 
brain regions were plotted on a surface visualization. 
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Fig. 3. Statistical comparison of controllability distribution between different MCI groups. The color bar indicates that only regions with yellow color on the top of 
the brain represent significant difference (P < 0.05) between different groups. 

Fig. 4. Controllability versus graph measures. The first row represents the scatter plot of weighted node strength, averaged over participants in each group, 
respectively, versus average controllability. The second row represents the scatter plot of weighted node betweenness, averaged over participants in each group, 
respectively, versus average controllability. The third row represents the scatter plot of global efficiency versus controllability. The global efficiency was averaged 
over all brain regions of each participant, and then averaged over participants in each group, respectively. 
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4. Discussion 

The primary goal of this study is to investigate the neural alterations 
underlying brain network dynamics associated with mild depression in 
MCI patients from a systematic level via a novel brain controllability 
analysis. The average controllability matrix was applied to explore the 
control mechanisms underlying depressive symptoms in MCI patients. 
Average controllability was calculated from white matter connectivity 
in the context of the brain network control theory (Gu et al., 2015). The 
main findings in this study are that the brain average controllability of 
the default mode network of EMCID patients was significantly decreased 

compared to cognitively normal subjects, EMCI patients without 
depression, and even LMCI patients without depression. On the other 
hand, our results suggest that multiple brain regions, including the su-
perior prefrontal, temporal, and cingulate cortices, are significantly 
altered in association with depressive symptom in EMCI patients. To the 
best of our knowledge, the present study represents the first effort to 
investigate the neural alterations underlying brain network transitions 
associated with depressive symptoms in MCI patients, and does so using 
novel brain controllability analyses. 

Depression is one of the most common neuropsychiatric complica-
tions of EMCI, which can be seen as a set of related problems in 
cognitive-control (Pellegrino et al., 2013). Several studies, based on 
various neuroimaging modalities such as PET, fMRI, functional 
near-infrared spectroscopy (fNIRS), and electroencephalography (EEG), 
have employed traditional graph-based analysis to reveal abnormal 
properties of brain networks in depression and dementia patients (Lee 
et al., 2010,; Liu et al., 2017,; Byers and Yaffe, 2011,; Li et al., 2019,; Li 
et al., 2019,; Sun et al., 2019). Although most studies report local 
properties changed in both depression and dementia patients (Yu et al., 
2019,; Lee et al., 2010,; Burke et al., 2019), it remains unclear how these 
regional changes lead to systematic-level alterations of the brain and 
depressive symptoms in dementia patients. Interestingly, our finding 
indicated that two graph measures of node strength and global efficiency 
were positively correlated with brain controllability measurement 
across all groups. This high correlation between node strength and 
controllability may imply the functional role of these regional hubs 
(high node strength) as critical for guiding the brain’s movement from 
an arbitrary state to a desired state by appropriate choice of external or 
internal stimulus. Structurally, it also indicates that the brain regions 
with high average controllability towards the brain network system are 
mainly located in strongly connected areas. The highest correlation 
between node strength and controllability was in the EMCID group, 
which may further indicate a compensatory mechanism triggered in the 
cognitive-deficit brain networks. It is possible that an EMCID patient 
reduces the utilization of poorly functioning brain areas and focuses on 
the well-functioning regions to control the proceeding of brain 

Fig. 5. Node strength distribution of different groups. The node strength values, averaged across 15 participants in each group, and ranked for all 210 brain regions 
were plotted on a surface visualization. 

Fig. 6. Statistical comparison of controllability values in default mode network 
between different groups. “∗” indicates P < 0.05 after FDR correction. “∗∗” 
indicates P < 0.01 after FDR correction. 
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behaviors to compensate for the lost function of other brain regions. The 
strong correlation between global efficiency and controllability may 
imply that a brain with higher capacity for parallel information transfer 
among nodes contributes to a more controllable brain system by external 
stimuli. It also suggests that an easily controllable brain system requires 
the network to be more efficient in signal delivery. The brain’s global 
efficiency has been related to the executive function during task per-
formance (Reijmer et al., 2013). From the control perspective, our re-
sults imply that performing a task is highly related to the extent to which 
the brain can be modulated towards an intrinsic or external stimulus. 
The fact that the lowest correlation between global efficiency and 
controllability is in the cognitively normal subjects further supports a 
decrease of brain complexity in MCI patients (Sandu et al., 2014,; Wang 
et al., 2017). Therefore, even though a brain network may be structur-
ally efficient, the overall brain may still be less controllable in MCI pa-
tients due to the brain’s high complexity in cognitive normal subjects. 

Depression and dementia-related studies suggest that the changes in 
the DMN are essential for explaining the disabling, and therefore 
intrinsically “depressive” and “dementing” natures, of the two diseases 
(Royall et al., 2013). Recently, the connectivity indices of DMN have 
been shown to be highest in normal controls, intermediate in MCI, and 
lowest in AD (Petrella et al., 2011). The same trend of decreased DMN 
connectivity has also been observed in depressed patients (Bluhm et al., 
2009). Interestingly, from the control perspective, our findings indicate 
that the average controllability of DMN is also highest in cognitively 
normal subjects, intermediate in the EMCI and LMCI groups, and largely 
decreased in the EMCID group, indicating a loss of controlling capacity 
of DMN with the severity of the disease. The decreased controllability in 
DMN from cognitively normal subjects to E\LMCI groups is consistent 
with previous findings that deficits occurred in DMN throughout the 
progression of dementia (Lee et al., 2016). As the depressive symptoms 
develop in MCI patients, the ability of the DMN to transition the brain 
between different activated behaviors is further decreased, indicating a 
superposition of the effects from the two diseases. In the clinic, the 
EMCID patients usually have lower clinical scores than the EMCI pa-
tients so they are more likely to be categorized into an even worse 
cognitive group, like the LMCI group. Interestingly, our finding shows 
that the EMCID patients with depression have significantly reduced 
DMN controllability than the LMCI group, indicating the DMN changes 
due to MCI are smaller compared to those associated with depression. 
The overlay effects of the two diseases are also reported in other 
network-level studies, which demonstrate the decrease of global effi-
ciency in MCI patients with depression when compared to the cogni-
tively normal, MCI patients, and depression groups (Li et al., 2015). It is 
no surprise, then, that there is a decreased trend in controllability 
observed due to the high positive correlation between controllability 
and global efficiency as shown in Fig. 4. The DMN plays a critical role in 
controlling the preceding of the brain and trainsiting the brain into 
many task-based activation profiles, and relaxing back once the task has 
been done (Lin et al., 2017). Substantially decreased controllability of 
DMN in the EMCID group, may account for the loss of capability of 
depressive patients to initiate, maintain, and control their thoughts, 
behaviors, or emotions to change their brain states and produce desired 
outcomes, or avoiding an undesired outcome. Although the main focus 
of this study was to differentiate MCI patients with and without 
depression, our results also indicate the feasibility of using controlla-
bility diagnostic for early detection of MCI patients, which is also clin-
ically important. The decreased connectivity of the DMN in MCI patients 
has been implicated in the loss of ability to maintain human memory in 
dementia (Lee et al., 2016,; Qi et al., 2010). From the control perspec-
tive, our results indicate that the controllability of DMN also shows a 
decreased trend from healthy subjects to the MCI patients, implying that 
the memory deficit in MCI patients was related to the disability of DMN 
in controlling the proceeding of the brain between different states or 
maintaining in a specific brain state. 

Recently, alterations of structure and function in depressed patients 

have been shown in the frontal-temporal-parietal regions, particularly in 
the frontal areas (Bos et al., 2018). Such a changing pattern was also 
observed in MCI pathologic studies, which may further impede the 
differentiation between depression and MCI symptoms based on the 
traditional graph-based analysis (Sabbagh et al., 2010). From the sys-
tematic level, the present work revealed some crucial regions in differ-
entiating the MCI patients with depressive symptoms from those who 
not (Fig. 7). For instance, the average controllability of the left superior 
prefrontal cortex differentiates between the CN group and EMCI group, 
between the EMCI group and EMCID group, and between the LMCI 
group and EMCID group. We observed a significant decreased trend of 
controllability from cognitively normal, to E/LMCI, then to the EMCID 
group. The prefrontal cortex dysfunction has been a central theme in the 
psychiatric neuroimaging literature (Masdeu, 2011). This region is 
involved in executive function, cognitive control, and planning 
(Koechlin and Summerfield, 2007,; Koechlin et al., 2003). The further 
attenuated controllability in the left superior prefrontal cortex of EMCID 
patients, relative to the E/LMCI patients, may explain the loss of ability 
for depressed patients to respond to cognitive control tasks, such as 
controlling emotion or setting and planning goals. The same localized 
impairment in network controllability of the left superior frontal cortex 
in subjects at high risk of bipolar suffering recurrent major depressive 
episodes was seen in previous study. (Jeganathan et al., 2018). The 
finding further suggests that the left prefrontal cortex’s regional 
controllability may be a valuable biomarker for distinguishing depres-
sive symptoms from MCI patients. The right superior prefrontal cortex in 
EMCID was also significantly decreased compared to cognitively normal 
subjects, which may explain the inability of depressed patients to 
establish and control the negative feelings. The same significantly 
decreased trend was not observed between cognitive normal and EMCI 
groups. This may also be used as a marker to differentiate the EMCI 
group from EMCID group, with one group showing a significant differ-
ence from the cognitively normal subjects. The l/r cingulate cortex in 
EMCID patients also displayed significantly decreased controllability 
versus the cognitively normal group. The cingulate cortex has been 
linked to cognitive control, negative affect and pain (Shackman et al., 
2011). The deficit of controlling ability in the cingulate cortex of 
depressed patients may further enhance the disability of depression 
patients to control negative mood states. However, same significantly 
decreased controllability in right cingulate cortex was observed in the 
EMCI group, which may impede the differentiation between the EMCI 
and EMCID groups using the right cingulate cortex as biomarker. In 
conclusion, the regional controllability of left/right superior prefrontal 
cortex and the left cingulate cortex may be promising regional bio-
markers to differentiate between EMCI and EMCID patients. The current 
work provides some promising biomarkers to distinguish between the 
CN, EMCI, EMCID, and LMCI groups. It is worth noting, however, that 
the inclusion of the LMCI group in the current study was done to 
ascertain whether the deficit shown in the early stage MCI group 
(EMCID) was caused by depression instead of the progression of de-
mentia. However, it would be very interesting to include a group of 
LMCI patients with depression to compare the associations of depression 
across the stages of MCI patients, and this will be our plan for a future 
study. 

5. Conclusion 

In conclusion, our findings suggest that the brain controllability can 
be a potential biomarker to differentiate EMCI patients with depressive 
symptoms from those who are not depressed. The results also illustrate a 
significant decrease in controllability in the default mode network of 
EMCI patients with depression versus those EMCI patients without 
depression. The regional comparison also demonstrated that the 
regional controllability of the left/right superior prefrontal cortex and 
left cingulate cortex can be employed as promising biomarkers to 
differentiate the EMCI and EMCID patients. 
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Öngür, D., Lundy, M., Greenhouse, I., Shinn, A.K., Menon, V., Cohen, B.M., et al., 2010. 
Default mode network abnormalities in bipolar disorder and schizophrenia. 
Psychiatry Res. 183, 59–68. 

Greicius, M.D., Supekar, K., Menon, V., Dougherty, R.F., 2009. Resting-state functional 
connectivity reflects structural connectivity in the default mode network. Cereb. 
Cortex 19, 72–78. 

Guo, Z., Liu, X., Hou, H., Wei, F., Liu, J., Chen, X., 2016. Abnormal degree centrality in 
Alzheimer’s disease patients with depression: A resting-state functional magnetic 
resonance imaging study. Exp. Gerontol. 79, 61–66. 

Fang, P., Zeng, L.-L., Shen, H., Wang, L., Li, B., Liu, L., et al., 2012. Increased cortical- 
limbic anatomical network connectivity in major depression revealed by diffusion 
tensor imaging. PLoS One 7, e45972. 

Korgaonkar, M.S., Cooper, N.J., Williams, L.M., Grieve, S.M., 2012. Mapping inter- 
regional connectivity of the entire cortex to characterize major depressive disorder: a 
whole-brain diffusion tensor imaging tractography study. Neuroreport 23, 566–571. 

Burke, A.D., Goldfarb, D., Bollam, P., Khokher, S., 2019. Diagnosing and treating 
depression in patients with Alzheimer’s disease. Neurol. Therapy 1–26. 

Bai, F., Shu, N., Yuan, Y., Shi, Y., Yu, H., Wu, D., et al., 2012. Topologically convergent 
and divergent structural connectivity patterns between patients with remitted 
geriatric depression and amnestic mild cognitive impairment. J. Neurosci. 32, 
4307–4318. 

Wise, T., Marwood, L., Perkins, A., Herane-Vives, A., Joules, R., Lythgoe, D., et al., 2017. 
Instability of default mode network connectivity in major depression: a two-sample 
confirmation study. Transl. Psychiatry 7, e1105. -e1105.  

Royall, D.R., Palmer, R.F., Vidoni, E.D., Honea, R.A., 2013. The default mode network 
may be the key substrate of depressive symptom-related cognitive changes. 
J. Alzheimers Dis. 34, 547–560. 

Tang, E., Giusti, C., Baum, G.L., Gu, S., Pollock, E., Kahn, A.E., et al., 2017. 
Developmental increases in white matter network controllability support a growing 
diversity of brain dynamics. Nat. Commun. 8, 1–16. 

Menara, T., Bassett, D.S., Pasqualetti, F., 2018. Structural controllability of symmetric 
networks. IEEE Trans. Autom. Control 64, 3740–3747. 

Strauman, T.J., Eddington, K.M., 2017. Treatment of depression from a self-regulation 
perspective: basic concepts and applied strategies in self-system therapy. Cogn. Ther. 
Res. 41, 1–15. 

Taquet, M., Quoidbach, J., Gross, J.J., Saunders, K.E., Goodwin, G.M., 2020. Mood 
homeostasis, low mood, and history of depression in 2 large population samples. 
JAMA Psychiatry 77, 944–951. 

Li, B.J., Friston, K., Mody, M., Wang, H.N., Lu, H.B., Hu, D.W., 2018. A brain network 
model for depression: from symptom understanding to disease intervention. CNS 
Neurosci. Ther. 24, 1004–1019. 

Scale, G.D., 1997. Geriatric Depression Scale. Arch. Intern. Med. 157, 449–454. 
McGuire, B.E., Batchelor, J., 1998. Inter-rater reliability of the WMS-R logical memory 

and visual reproduction subtests in a neurosurgical sample. Aust. Psychol. 33, 
231–233. 

Edmonds, E.C., McDonald, C.R., Marshall, A., Thomas, K.R., Eppig, J., Weigand, A.J., 
et al., 2019. Early versus late MCI: Improved MCI staging using a neuropsychological 
approach. Alzheimer’s Dement. 15, 699–708. 

Yeh, F.-C., Tseng, W.-Y.I., 2011. NTU-90: a high angular resolution brain atlas 
constructed by q-space diffeomorphic reconstruction. Neuroimage 58, 91–99. 

Sakha, M.S., Shaker, H.R., 2017. Optimal sensors and actuators placement for large-scale 
unstable systems via restricted genetic algorithm. Eng. Comput. 

Sreeram, V., Agathoklis, P., 1994. On the properties of Gram matrix. IEEE Trans. Circuits 
Syst. I 41, 234–237. 

Berlot, R., Metzler-Baddeley, C., Ikram, M.A., Jones, D.K., O’Sullivan, M.J., 2016. Global 
efficiency of structural networks mediates cognitive control in mild cognitive 
impairment. Front. Aging Neurosci. 8, 292. 

Rubinov, M., Sporns, O., 2010. Complex network measures of brain connectivity: uses 
and interpretations. Neuroimage 52, 1059–1069. 

Woolson, R., 2007. Wilcoxon signed-rank test. Wiley Encycl. Clin. Trials 1–3. 
Poole, M.A., O’Farrell, P.N., 1971. The assumptions of the linear regression model. Trans. 

Inst. Br. Geogr. 145–158. 
Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate: a practical and 

powerful approach to multiple testing. J. R. Statist. Soc. 57, 289–300. 
Pellegrino, L.D., Peters, M.E., Lyketsos, C.G., Marano, C.M., 2013. Depression in 

cognitive impairment. Curr. Psychiatry Rep. 15, 384. 
Li, R., Rui, G., Zhao, C., Wang, C., Fang, F., Zhang, Y., 2019. Functional network 

alterations in patients with amnestic mild cognitive impairment characterized using 
functional near-infrared spectroscopy. IEEE Trans. Neural Syst. Rehabil. Eng. 28, 
123–132. 

Li, R., Nguyen, T., Potter, T., Zhang, Y., 2019. Dynamic cortical connectivity alterations 
associated with Alzheimer’s disease: an EEG and fNIRS integration study. 
NeuroImage 21, 101622. 

Sun, S., Li, X., Zhu, J., Wang, Y., La, R., Zhang, X., et al., 2019. Graph theory analysis of 
functional connectivity in major depression disorder with high-density resting state 
EEG data. IEEE Trans. Neural Syst. Rehabil. Eng. 27, 429–439. 

Reijmer, Y.D., Leemans, A., Caeyenberghs, K., Heringa, S.M., Koek, H.L., Biessels, G.J., 
et al., 2013. Disruption of cerebral networks and cognitive impairment in Alzheimer 
disease. Neurology 80, 1370–1377. 

Sandu, A.-L., Staff, R.T., McNeil, C.J., Mustafa, N., Ahearn, T., Whalley, L.J., et al., 2014. 
Structural brain complexity and cognitive decline in late life—a longitudinal study in 
the Aberdeen 1936 Birth Cohort. Neuroimage 100, 558–563. 

Wang, B., Niu, Y., Miao, L., Cao, R., Yan, P., Guo, H., et al., 2017. Decreased complexity 
in Alzheimer’s disease: resting-state fMRI evidence of brain entropy mapping. Front. 
Aging Neurosci. 9, 378. 

Petrella, J., Sheldon, F., Prince, S., Calhoun, V.D., Doraiswamy, P., 2011. Default mode 
network connectivity in stable vs progressive mild cognitive impairment. Neurology 
76, 511–517. 
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